
Journal of Nuclear Materials 344 (2005) 36–39

www.elsevier.com/locate/jnucmat
Thermodynamic analysis of light-actinide elements
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Abstract

The thermophysical properties of the alpha phases of the light actinide elements Th, U, Np and Pu were analysed.

For each of the analysed elements, the Gibbs free-energy was modelled by an explicit function of temperature T and

pressure P over the whole relevant T–P range, in a manner compatible with the CALPHAD (Calculation of Alloy

Phase Diagrams) method. Several adjustable model-parameters were fitted to available experimental results. The model

is based on a new semi-empirical equation of state, which interpolates with Thomas–Fermi type models for the volume

and with the Dulong–Petit value for the heat capacity, at extreme pressures.

� 2005 Elsevier B.V. All rights reserved.
1. Introduction

In order to enable reliable interpolations and extra-

polations of thermophysical properties, it is desirable to

fit the available experimental data to consistent thermo-

dynamic models. One common type of models is based

on the Mie–Gruneisen equation of state (EOS). For

many purposes, the use of the Mie–Gruneisen EOS is

cumbersome, since it is written in terms of temperature

and volume (T,V) whereas in most experiments the con-

trolled variables are temperature and pressure (T,P). A

different approach is outlined by Eq. (1):

GðT ; P Þ ¼ GðT ; P 0Þ þ
Z P

P0

V dP ; ð1Þ
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where G is the Gibbs free energy and P0 is the reference

pressure (usually 1 atm). The first term in Eq. (1) is the

Gibbs free energy along the reference isobar, which is

determined by thermochemical measurements, i.e. the

isobaric heat capacity. The second term represents the iso-

thermal change ofGwith pressure. Thermodynamicmod-

els of this type were used to couple thermophysical

properties with phase-equilibrium calculations in con-

junction with the CALPHAD (Calculation of Alloy

Phase Diagrams) method [1–3]. However, the formalism

outlined in Eq. (1) suffers from several difficulties. For

the expression for G to remain explicit, an EOS of the

form V(T,P) is required. For this reason most workers

used the Murnaghan EOS which, however, is limited in

its range of application to P < B0/2 [4], where B0 is the

zero-pressure bulk modulus. A second difficulty lies in

the temperature-dependence of the EOS. For example,

Jacobs and Oonk [5] have shown that isothermal EOS

with temperature-dependent parameters are prone to pre-

dict negative thermal expansion at high pressures, even

for closed packed substances. Finally, at high pressure,

a phasemay become stable outside the temperature range,
ed.
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at which it is stable at ambient pressure. Thus, in order to

calculate high-pressure phase equilibria,G(T,P0) has to be

extrapolated outside the measured range. Although the

extrapolation itself may not be tested directly, it may af-

fect the predicted high-pressure thermal properties. The

existing methods of heat-capacity extrapolation [6] were

not constructed in view of such effects.

In the present contribution, we employ a new scheme

for the analysis of thermophysical properties. The scheme

includes a new V(T,P) EOS and a new method for the

evaluation of G(T,P0). As will be shown in the next sec-

tion, the new EOS is an interpolation between the low-

pressure behaviour and Thomas–Fermi type models at

very high pressures. It may be integrated to yield an expli-

cit, analytic expression ofG(T,P) and is valid to high pres-

sures, P > B0. The consistency of the model is improved

by invoking the assumption that at high pressure, and

above the Debye temperature, the heat capacity tends to

the Dulong–Petit value of 3R, as implied by physically

motivatedmodels for the heat capacity [7,8]. By use of this

assumption,G(T,P0) is related to theEOS. The newmodel

is applied to the analysis of the properties of the light acti-

nide elements Th, U, Np and Pu.
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2. The model

The volume V(T,P) may be written as a sum of two

terms:

V ðT ; P Þ ¼ V ðT 0; P Þ þ V thðT ; P Þ; ð2Þ

where T0 is a reference temperature and Vth(T,P) will be

called �Thermal volume�. The function V(T0,P) describes

the isothermal compression at the reference tempera-

ture. We suggest that V(T0,P) may be written as a

sum:

V ¼
X5

n¼2

cn � fnðV 0;B0;B0
0; PÞ; ð3Þ

where fn are functions of the pressure, that also depend

on the material parameters: V0, B0, B
0
0 that are the refer-

ence molar volume, the bulk modulus and its pressure

derivative at (T0,P0) Æ fn are given by

fnðV 0;B0;B0
0; P Þ

¼ V 0 � 1� an þ an � 1þ n
3an

� P
B0

� �1
n

" #�3

; ð4Þ

where an ¼ ðn� 1Þ � ð3B0
0 � 1Þ�1

.

The coefficients cn in Eq. (3) also depend on material

properties, but should not be considered as additional

adjustable parameters. These coefficients are normalized

to give 1 ¼
P5

n¼2cn in order that V(T0,P0) = V0, and are

chosen so that Eq. (3) interpolates smoothly with the

Thomas–Fermi type models [9]. In the present work,
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the calculation by Kalitkin and Kuzmina [10] was used.

The functional form for the thermal volume Vth is se-

lected so that the following conditions are fulfilled:

oV th

oT
P 0;

o2V th

oT 2
P 0;

Z P¼1

P0

V thðT ; PÞ; dP < 1;

ð5Þ

where the first condition means positive thermal expan-

sion and the second implies that the heat capacity de-

creases monotonously as pressure increases. The third

condition means that the decrease of the thermal volume

is rapid enough, so that in compression, its contribution

to the Gibbs free energy, converges to a finite value at

extreme pressure. We found that the following form fulf-

ils the above requirements:

V thðT ; P Þ

¼ V 0 � 1� bm þ bm � 1� m
3bm

� AðT Þ þ m
3bm

� P
B0

� �1
m

" #�3

� V 0 � 1� bm þ bm � 1þ m
3bm

� P
B0

� �1
m

" #�3

; ð6Þ

m is an integer. We found that m = 3, suits several mate-

rials. bm = (m � 1) Æ (3d0 � 1)�1 where d0 is an adjustable

parameter that may be identified with the Anderson–
Fig. 1. Properties of U. (a) Molar volume at atmospheric pressure. (b

heat capacity of the a phase at atmospheric pressure, with extrapolatio

P relation along the Hugoniot.
Gruneisen parameter at (T0,P0) [11]. In many cases it

may be assumed that d0 ¼ B0
0. Above the Debye temper-

ature, AðT Þ ¼ a0 � T þ a1 � T 2 � a0 � T 0 � a1 � T 2
0 where a0

and a1 are adjustable parameters. a0 may be identified

with the thermal expansion coefficient at (T0,P0). Now,

if it is assumed, that at extreme pressures the heat capac-

ity tends to the Dulong–Petit value of 3R, it is possible to

derive the relation between G(T,P0) and the EOS [8]:

GðT ; P 0Þ ¼ H 0 � T � S0 þ 3R � T � ln T 0

T

� �
þ 3R � ðT � T 0Þ

�
Z P¼1

P 0

V thðT ; P ÞdP ; ð7Þ

where S0 and H0 are constants that may be set to yield

the conventional values of enthalpy and entropy at stan-

dard conditions.
3. Application

The adjustable parameters of the new scheme were

fitted to available experimental data on the light actini-

des. The values of the fitted parameters and references

to the experimental data are given in Table 1. Some cal-

culations done with our model for a-U, are illustrated in

Fig. 1. In Fig. 1(a) and (b), the calculated molar volume
) Adiabatic bulk modulus at atmospheric pressure. (c) Isobaric

n to high temperatures. (d) Room temperature isotherm and V–
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and the adiabatic bulk modulus, are compare with

experimental results for ambient pressure. The fit may

be regarded as satisfactory, allowing for the small num-

ber of the adjustable parameters. In Fig. 1(c), the iso-

baric heat capacity of a-U at ambient pressure,

calculated by the new model, is compared with the cur-

rently used thermodynamic database (SGTE) [6].

Although U transforms from a to b at 942 K, the extrap-

olation of the heat capacity of the a phase to higher tem-

peratures is required for calculation of high-pressure

phase equilibria, as discussed in Section 1. While in the

SGTE database it is assumed that at high temperatures

the heat capacity of solid phases is equal to the heat

capacity of the liquid, the new model results in a very

different extrapolation [8]. This difference should result,

via Eq. (1), in different predictions for the properties of

a-U at elevated temperatures and pressures. As sug-

gested by Fernández Guillermet [12], we compared the

model predictions with experimental Hugoniot data

for Th and U [13]. Even though the Hugoniot data

was not used in fitting the model parameters, and

although most of the Hugoniot lies in the liquid range

of stability, the calculated Hugoniot is found to be in

surprisingly good agreement with experiment, as may

be seen in Fig. 1(d) (for U). While the good agreement

between the calculated and measured Hugoniot is not

an ultimate proof for the correctness of the new EOS,

it may still be viewed as a partial check of its validity.
4. Conclusion

A new scheme was applied to the analysis of the ther-

mophysical properties of light actinide elements in their

alpha phases, which allows consistent evaluation of vari-

ous properties. Thus, more reliable interpolations and

extrapolations aremade possible. The new scheme is com-

patiblewith theCALPHADmethod. Thus, itmay be used

for calculation of high-pressure phase equilibria, when the

new schemewill be extended to other phases, including the

liquid. Such an extension is currently in preparation.
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